
 Message Containers and API Framework
 Implementation DRAFT

Ref. : MPL-ACNS2-M
Date : Aug. 18, 2010
Version: 0.9a

 i

Message Containers
and API Framework

Notices

Copyright 2009-2010 Motion Picture Laboratories, Inc. This work is licensed under the Creative Commons
Attribution-No Derivative Works 3.0 United States License.

 Message Containers and API Framework
 Implementation DRAFT

Ref. : MPL-ACNS2-M
Date : Aug. 18, 2010
Version: 0.9a

 ii

CONTENTS

1 Overview .. 1
1.1 Scope ... 1
1.2 ACNS Transport Legacy ... 1
1.3 References ... 2

1.3.1 ACNS documents .. 2
1.3.2 RFCs (Request for Comment) ... 2

1.4 Document Conventions .. 2
2 Messaging Models ... 3

2.1 Legacy .. 3
2.2 ACNS 2.0 .. 3

3 Message Packaging and Signing ... 4
3.1 Note on structure .. 4
3.2 MessageEnvelope element .. 4
3.3 Message Element ... 5
3.4 Authentication ... 6

3.4.1 Trust .. 6
3.4.2 Signed XML ... 6

4 Email Delivery .. 8
4.1 Processing Email Messages ... 8
4.2 Designated Agents ... 8
4.3 Subject .. 8
4.4 Body ... 8

4.4.1 ACNS Infringement Message (“Notice”) Body ... 9
4.4.2 Other Message Body ... 9

4.5 Message Responses .. 10
4.6 Payload Encryption ... 10

5 Restful Web Services Delivery ... 11
5.1 API Style ... 11
5.2 Designated Agents ... 11
5.3 Transport Security .. 12

5.3.1 Encryption ... 12
5.3.2 Authentication .. 12

5.4 Message Envelope ... 12
5.5 REST API ... 12

5.5.1 HTTP and XML .. 12
5.5.2 Status Codes and Error Responses .. 12
5.5.3 REST Notes .. 13
5.5.4 REST Endpoint (URL) ... 13
5.5.5 NoticeID ... 14
5.5.6 ACNS REST Interfaces ... 14

6 Legacy Web Services Delivery .. 18

 Message Containers and API Framework
 Implementation DRAFT

Ref. : MPL-ACNS2-M
Date : Aug. 18, 2010
Version: 0.9a

 iii

6.1 API Style ... 18
6.2 Designated Agents ... 18
6.3 Transport Security .. 18

6.3.1 Encryption ... 18
6.3.2 Authentication .. 18

6.4 Message Envelope ... 19
6.5 HTTP Post .. 19

Revision History:

Version Date Notes on version
0.9a August 18, 2010 This version is considered ready for implementation with the warning

that minor changes may occur prior to final publication.

 Message Containers and API Framework
 Implementation DRAFT

Ref. : MPL-ACNS2-M
Date : Aug. 18, 2010
Version: 0.9a

 1

1 OVERVIEW
Content owners send notices to ISPs, colleges and universities, companies hosting servers

and other entities that may make content available in conflict the content owners’ rights. The
Advanced Copyright Notice System (ACNS)1

Traditionally, notices have been sent via email, and email is still supported. Some desire
a web services means of accepting notices. This document describes both email and web
services support. Parameters around email, such as the use of the subject line, and around web
services are defined in this document.

 provides a means for notice senders and recipients
to communicate using XML data structures, facilitating automation.

Messages have always been signed for authentication, but this document offers
alternative authentication models and provides for data encryption.

ACNS defines communications between notice senders and recipients. There are more
participants in the infrastructure, and there are additional interfaces to support those entities.
This document also defines the communications mechanism for them.

1.1 Scope
This document specifies message definitions, security, packaging, and delivery

infrastructure. This document does not define the formats for specific messages that will be
delivered, and instead points to various other specifications such as the Automated Content
Notice System (ACNS 2.0). Notice Message Containers and API Framework was originally
created for ACNS, but will serve as a general specification for packaging and delivering
messages of various types.

Other documents for specific APIs will refer to this document.
This document defines the set of acceptable mechanisms to secure, and package

messages; specifically:
• Mechanisms for packaging and delivering messages
• Mechanisms for authentication and security.

All XML constraints and conventions are the same for ACNS 2.0. See ACNS 2.0
documentation MPL-ACNS2 at http://http:ww.movielabs.com/ACNS.

1.2 ACNS Transport Legacy
ACNS is commonly used for sending DMCA and other notices. Many content owners

(and representatives) are sending notices with ACNS, and there are many recipients processing
ACNS XML. Due to this legacy, mechanisms are in place and cannot be modified. The ACNS
2.0 message structure makes only additions to the ACNS 0.7 specification so content owners
may send ACNS 2.0 messages to recipients who have implemented ACNS 0.7 processing
without negative consequence. That is, ACNS 0.7 recipients will ignore, or more specifically
will not notice, the additional attributes and elements and process the notice as they do currently.

1 MovieLabs document, MPL-ACNS2C. This may be found at http://www.movielabs.com/ACNS

http://http:ww.movielabs.com/ACNS�
http://www.movielabs.com/ACNS�

 Message Containers and API Framework
 Implementation DRAFT

Ref. : MPL-ACNS2-M
Date : Aug. 18, 2010
Version: 0.9a

 2

The backwards compatibility extends to the delivery of ACNS notices. Email is the
supported mechanism for delivery. Content owners and their representatives who send notices
must continue to support email as a delivery mechanism.

While ACNS 0.7 had not messages from notice recipient to sender, ACNS 2.0 does. This
requires new return channels. Email is the legacy mechanism.

Going forward, ACNS sending and receiving parties may agree to use mechanisms other
than email. These parties are expected to comply with the Web Services interface defined in this
specification. This provides more efficient and secure interfaces than email.

1.3 References

1.3.1 ACNS documents
These can be found at http://http:ww.movielabs.com/ACNS
• Automated Content Notice System (ACNS 2.0). Describes the ACNS XML

information and usage. Requires version 1.1j or later.
• ACNS 2.0 Email Delivery, MPL-ACNS2-E, Version 1.0, February 11, 2009. The

predecessor to this document.
• DRAFT ACNS P2P Profile—defines usage for P2P notices.
• DRAFT ACNS Server Profile—defines usage for user generated content (UGC) sites,

Cyberlocker, link sites, etc.

• ACNS 2.0 Version 1.0 XML schema

1.3.2 RFCs (Request for Comment)
RFCs are generally available online and are therefore not explicitly referenced here.

1.4 Document Conventions
Tabular element descriptions are of the same form as in Automated Content Notice

System (ACNS 2.0). Tables can show elements, attributes and simple child elements.
An associated XML schema further defines the XML structure and constraints.

Inconsistencies should be directed to the authors at acns <at> movielabs.com.
“Must” and “shall” defines explicit requirements. “May” and “should” describes best or

recommended practices.

http://http:ww.movielabs.com/ACNS�

 Message Containers and API Framework
 Implementation DRAFT

Ref. : MPL-ACNS2-M
Date : Aug. 18, 2010
Version: 0.9a

 3

2 MESSAGING MODELS
ACNS originally had messages only from notice sender to recipient. ACNS 2.0 adds

messages from notice recipient to sender, so bi-directional messaging is required.
ACNS was originally email-only. For bulk processing of messages, some prefer the use

of web services. This document supports models for both email and web services.

2.1 Legacy
ACNS originally supported only email delivery of notices. This model is still supported.

Notice Sender Notice RecipientEmail

ACNS (Legacy)

2.2 ACNS 2.0
ACNS 2.0 supports two send and two receive models shown below.
Everyone must be able to send and receive email messages.
Everyone may optionally implement web services. There is no guarantee all other parties

will implement web services.
Send and receive need not be symmetric. That is, one may receive messages via web

services and return responses via email. However, whatever mechanism is used, it should be
used consistently—unless otherwise noted for specific message types.

ACNS 2.0 Options

Notice Sender Notice Recipient
Email

Notice Sender Notice Recipient
Web Services

Notice Sender Notice Recipient
Email

Notice Sender Notice Recipient
Web Services

 Message Containers and API Framework
 Implementation DRAFT

Ref. : MPL-ACNS2-M
Date : Aug. 18, 2010
Version: 0.9a

 4

3 MESSAGE PACKAGING AND SIGNING
This section defines message containers. These support both web delivery and email

delivery.
There are provisions for signing and for packing multiple messages together. Usage of

these specific options are defined the delivery mechanisms (i.e., email or web services).

3.1 Note on structure
The message structure needs to provide for multiple message and for signing messages.

The Message Envelope is provided to contain multiple messages. If signed, they are all signed
with one signature using XMLDSIG as described in Signed XML below.

The Message element contains one ACNS or other message element. This container adds
a Type attribute to simplify processing upon reception.

Message Envelope

Signature

Message
ACNS or other message

Message
ACNS or other message

Message
ACNS or other message

...

3.2 MessageEnvelope element
The MessageEnvelope is the generic container that carries one or more Message

elements. It optionally it contains a signature as defined under Signed XML below.
When signing, the MessageEnvelope is the XMLDSIG envelope. That is, the signature

includes the entire element with the exclusion of the signature child element itself.
The ReplyEmail and ReplyURI attributes in the MessageEnvelope provide information

about where reply messages should be sent. These attributes are optional. If ReplyEmail is
missing, the reply address is inferred from the ACNS message body. The ReplyURI attribute is
populated only if the sender has the ability to receive messages using web services delivery. Note
that senders who specify a ReplyURI must be able to accept all messages types that they can
receive over the web-based method.

 Message Containers and API Framework
 Implementation DRAFT

Ref. : MPL-ACNS2-M
Date : Aug. 18, 2010
Version: 0.9a

 5

Element Attribute Definition Value
MessageEnvelope

 ReplyEmail Email address to send reply messages
to (optional)

xs:string

 ReplyURI URI referential part for reply messages
for web-based delivery (optional)

xs:string

 id ID used for reference from signature.
Required if Signature element is
included. (optional)

xs:ID

Message Collection of 1 or more messages (1..n) See Message Element

Signature xmldsig Signature. See “Signed XML”
below. (optional)

ds:SignatureType

3.3 Message Element
The basic element is the Message element. It contains a single message, such as an

ACNS 2.0 NoticeAck. The particular purpose for this element is to include a Type attribute that
instructs the recipient the type of message contained, and provide additional information about
the message such as a unique message ID, the date and time that the message was created. Note
that the sender must guarantee that the message IDs are globally unique. A simple mechanism to
do this would be to add the sender’s organization’s domain address as a prefix or suffix to the
message ID.

The Message element contains one of the elements that constitute messages. In ACNS,
these are Infringement, NoticeAck, StatusRequest and NoticeStatus. Note that for legacy
reasons, in email Infringement is not typically contained in Message element. Other elements
can be contained based on usage. Type must match the element name.

Element Attribute Definition Value
Message

 Type Type of message: Element name for message
type

xs:string
“ACNS2.0Notice”
“ACNS0.7Notice”
“ACNSNoticeAck”
“ACNSStatusRequest”
 “ACNSNoticeStatus”

 ID Globally unique message id (optional) xs:string

 Created Date and Time when the message was created
(not necessarily sent or received), (optional)

xs:datetime

 Message Containers and API Framework
 Implementation DRAFT

Ref. : MPL-ACNS2-M
Date : Aug. 18, 2010
Version: 0.9a

 6

(choice of
Infringement
NoticeAck
NotusStatus
StatusRequest)

 A message element such as NoticeAck,
StatusUpdate, or StatusRequest

See acns:Infringement,
acns:NoticeAck,
acns:NoticeStatus and
acns:StatusRequest

3.4 Authentication
All messages must be authenticated. Different delivery mechanisms use different

authentication mechanisms (e.g., authenticated secure channels, signed email, and signed XML).
In general, mechanisms are discussed in the context of the specific mechanism; for example,
email signing is discussed in the email section. General concepts such as trust model and a
signed XML container is common to more than one mechanism, and is described here.

3.4.1 Trust
Generally speaking, anyone may send notices to anyone else if they have just cause.

Recipients of such notices should be able to determine if the sender is who they say they are to
avoid spoofed messages. Standard Internet standards and practices are adopted by this
specification. Namely, public key encryption

3.4.2 Signed XML
For message-level authentication, the general process is that the sender generates

unsigned messages (based on the appropriate specification for the message), generates a digital
signature for that message, and then packages the message with the signature. This package is
then sent to the recipient. The signed message contains enough information to validate the sender
of the message, and includes both the unsigned message as well as the digital signature of the
unsigned message XMLDSIG Signature.

XML Digital Signatures can be used to sign and validate messages across the
infrastructure. These shall be in conformance with XML Signature Syntax and Processing
(Second Edition), W3C Recommendation 10 June 2008 as described here:
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/ Note that later versions may be
adopted as defined here: http://www.w3.org/TR/xmldsig-core/

The following constraints shall apply when generating digital signatures:
• For CanonicalizationMethod

o Algorithm=http://www.w3.org/2006/12/xml-c14n11#WithComments
• For SignatureMethod,

o Algorithm=http://www.w3.org/2000/09/xmldsig#rsa-sha1
• For DigestMethod,

o Algorithm=http://www.w3.org/2000/09/xmldsig#sha1

A sample XML segment containing a digital signature is shown below.

http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/�
http://www.w3.org/TR/xmldsig-core/�
http://www.w3.org/2006/12/xml-c14n11#WithComments�
http://www.w3.org/2000/09/xmldsig#rsa-sha1�
http://www.w3.org/2000/09/xmldsig#sha1�

 Message Containers and API Framework
 Implementation DRAFT

Ref. : MPL-ACNS2-M
Date : Aug. 18, 2010
Version: 0.9a

 7

<?xml version="1.0" encoding="UTF-8"?>
<MessageEnvelope ReplyEmail="example@..." ReplyURI="http://example..." id="envelope"
xsi:schemaLocation="http://www.movielabs.com/ACNS/acnsvx.x.xsd" xmlns="http://www.movielabs.com/ACNS"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <Message Created="2001-12-17T09:30:47Z" ID="12345678" Type="ACNSStatusRequest">
...
 </Message>
 <ds:Signature>
 <ds:SignedInfo>
 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/2006/12/xml-c14n11#WithComments"/>
 <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <ds:Reference URI="#envelope">
 <Transforms>
 <Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 </Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2001/10/xmldsig#sha1"/>
 <ds:DigestValue>6hpmccmjxQmAI143OhQfIWpkryw=</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>UjBsR09EbGhjZ0dTQUxNQUFBUUNBRU1tQ1p0dU1GUXhEUzhi</ds:SignatureValue>
 <KeyInfo>
 <X509Data>
 <X509IssuerSerial>
 <X509IssuerName>CN=TestSignCert</X509IssuerName>
 <X509SerialNumber>75496503122422458150193540449068096025</X509SerialNumber>
 </X509IssuerSerial>
 </X509Data>
 </KeyInfo>
 </ds:Signature>
</MessageEnvelope>

Note that senders must use the same certificate, as defined in the KeyInfo element of the
XMLDSig, for all messages using web services. This Key will serve as a unique identifier for
the sender, and will be used to describe configuration information (such as URIs) associated with
the sender.

Note that the Reference element’s URI attribute will always be set to the value “#Body”.
The following constraints shall apply when generating digital signatures:

• Data will be transmitted in accordance with section 6.6.4 of that document,
“Envelope Transform”. XML for encoding may be found here:
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/xmldsig-core-
schema.xsd#enveloped-signature

All web-based delivery mechanisms will support Signed Messages as defined above as a
mechanism to sign and validate messages. Email-based delivery will not use XMLDSIG to sign
messages.

All recipients of messages must validate Signed Messages before processing them.
Note that all messages require the use of Canonical XML, Version 1.1. (With Comments)

http://www.w3.org/TR/xml-c14n11/, which is necessary for proper signing.

http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/xmldsig-core-schema.xsd#enveloped-signature�
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/xmldsig-core-schema.xsd#enveloped-signature�
http://www.w3.org/TR/xml-c14n11/�

 Message Containers and API Framework
 Implementation DRAFT

Ref. : MPL-ACNS2-M
Date : Aug. 18, 2010
Version: 0.9a

 8

4 EMAIL DELIVERY
Email is the default mechanism for communicating messages. All parties should be

capable of sending and receiving signed messages via email.
Email messages conform to applicable RFCs (e.g., 2821, 2822, 2045-2049, and others as

noted).

4.1 Processing Email Messages
Message sender sends ACNS Email Container (described above) via standard email

mechanisms.
Recipient receives email at the specified email address and verifies the authenticity of the

message by checking the digital signature. If the received message does not pass the signature
test, it may be ignored. Note that this prevents someone from forging notices and flooding a
copyright agent. It is strongly encouraged that if this occurs, the sending agent is contacted and
warned that someone is forging notices in their name.

If the signature passes the message should be processed.

4.2 Designated Agents
Prior to messages being sent, each potential message recipient provides appropriate email

address for delivery of various messages. For example, for ACNS messages, in the United
States, a service provider would designate an agent for receipt of DMCA notices as would be
found here: http://www.copyright.gov/onlinesp/. Email addresses may be established via
separate agreement as appropriate for other types of messages.

4.3 Subject
The subject of the email must start with the message name, followed by optional

parameters that are message specific. Message-specific API documents define the format of the
subject line for each message type delivered using Email.

The recommended form for a subject line is as follows:
<type> + “: ” + <ID> + “:” + <email>

Where <type> is the ACNS element type (i.e., “Infringement”, “NoticeAck”, “StatusUpdate”, or
“StatusRequest”), <ID> is the “id” element from the “Case” element from the “Infringement” element, and
<email> is the “email” element from “Complianant” element from the “Infringement” element.

For example:
Subject: Infringement: 123456789:abuse@noticesender.com

4.4 Body
The body contains the message. Messages may be signed in accordance with RFC 3156

as discussed in Transport Security.

http://www.copyright.gov/onlinesp/�

 Message Containers and API Framework
 Implementation DRAFT

Ref. : MPL-ACNS2-M
Date : Aug. 18, 2010
Version: 0.9a

 9

4.4.1 ACNS Infringement Message (“Notice”) Body
The ACNS infringement notice has its own email format for legacy reasons.

The body of an ACNS infringement message contains the cover letter and ACNS XML.
Other ACNS messages contain the XML and optionally a cover letter. The entire message must
be signed using PGP. This is current practice in ACNS.

Following is an example of an infringement notice:
-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1
Dear ISP,
…
Yours Respectfully,
Content Owner.

<?xml version="1.0" encoding="iso-8859-1"?>

<Infringement
xmlns="http://www.movielabs.com/ACNS"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
…

</Infringement>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.8 (FreeBSD)

iQEcBAEBAgAGBQJJbNcWAAoJEL3U2pfJUDus7D0H/im8siM5j7SzlOWkdNL0oTH3
e+hoR4NoOBOelxUkFOHfDZ/ljJJThJJTbeSSryny/VPXwNqo90PNjgsjSy5pYyeC
egccHwSLtE+R6RmqHZn3hmjmoGR7OMXhhRYRWt5acoYuxLak3UL+sPzG69atkLNf
aBEhooIELphfXERn4BjFmksTyZsEfDKEa+iAtoKdIYFG27wegC6RXKQvGDDf/okI
8ZSZiVMCdb/hg+1FSDSdzf3gWNoD9dRy4VK6DYnmSh1Jqw6QjwalaelyAieZZYLe
5mxuCzQIBgknBgdvvkNHMxYIcRrM5LWJDDaCArYz1iWhcf731/oGHq9q/AmPIFc=
=H/9J
-----END PGP SIGNATURE-----

4.4.2 Other Message Body
This applies to ACNS messages other than Infringement and all other messages.
The body of the message contains the Message Envelope, describe by the MessageEnvelope

element above.
It may optionally contain a cover letter prior to the XML.
The MessageEnvelope must not contain a Signature Element. The entire email body (the

cover letter and the MessageEnvelope element) must be PGP signed for delivery.
An example email message body is shown below:

 Message Containers and API Framework
 Implementation DRAFT

Ref. : MPL-ACNS2-M
Date : Aug. 18, 2010
Version: 0.9a

 10

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

If you receive this message by mistake, please call
Jonathan Do at 1-310-555-5555.

<?xml version="1.0" encoding="iso-8859-1"?>
<MessageEnvelope>
 <Messages>
 <Message Type=”NoticeAck”>
 …
 </Message>

…
 </Messages>
</MessageEnvelope>

-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.8 (FreeBSD)

iQEcBAEBAgAGBQJJbNcWAAoJEL3U2pfJUDus7D0H/im8siM5j7SzlOWkdNL0oTH3
e+hoR4NoOBOelxUkFOHfDZ/ljJJThJJTbeSSryny/VPXwNqo90PNjgsjSy5pYyeC
egccHwSLtE+R6RmqHZn3hmjmoGR7OMXhhRYRWt5acoYuxLak3UL+sPzG69atkLNf
aBEhooIELphfXERn4BjFmksTyZsEfDKEa+iAtoKdIYFG27wegC6RXKQvGDDf/okI
8ZSZiVMCdb/hg+1FSDSdzf3gWNoD9dRy4VK6DYnmSh1Jqw6QjwalaelyAieZZYLe
5mxuCzQIBgknBgdvvkNHMxYIcRrM5LWJDDaCArYz1iWhcf731/oGHq9q/AmPIFc=
=H/9J
-----END PGP SIGNATURE-----

4.5 Message Responses
Some messages require responses to be sent to the sender. Message specific documents

outline the response obligations for each message type.

4.6 Payload Encryption
The PGP signed email payload (body) may also be encrypted in accordance with RFC

3156 using the recipient’s public key. This must be by agreement and with appropriate key
exchange. Note that RFC 3156 doest not provide for header encryption.

 Message Containers and API Framework
 Implementation DRAFT

Ref. : MPL-ACNS2-M
Date : Aug. 18, 2010
Version: 0.9a

 11

5 RESTFUL WEB SERVICES DELIVERY
Web services delivery is an alternate mechanism for communicating signed messages. If

both the sender and the recipient support it, web-based delivery is strongly preferred. If a web-
based interface is used for some instances of a message type, it should be used for all messages
of that type.
A web services interface includes the following general flow:

• Message recipient provides the associated URIs for the services that will receive different
messages

• Vendor generates message XML (based on the appropriate spec) and also generates the
digital signature. A MessageEnvelope element is then generated that contains both the
Messages element as well as the Signature element, and is used as a post parameter.

• Sender establishes a secure connection with recipient using SSL (TLS 1.1)
• Sender authenticates to recipient using a username/password (HTTP Basic

Authentication)
• Sender sends one or more messages.
• Receiver processes the request and validates the message and the sender authentication

credentials.
• Receiver then processes the message and immediately returns a status code indicating

message has been received and can be processed, or that there is an error and it cannot
(an error message is returned).

• Responses are returned as appropriate

5.1 API Style
The core requirement for a web services API is a secure, authenticated channel.

Encryption such as TLS 1.1 and authentication such as HTTP Basic Authentication are a
minimum expectation. Beyond that, any style of interface is acceptable. Some have chosen to
implement as an HTTP POST to a single location; which is fine.

The document defines a RESTful2 interface3

5.2 Designated Agents

. REST, as used, is essentially equivalent to
a simple HTTP POST interface for those who have requested such an API.

Not every ISP and other recipient will provide a web-based interface. Designated Agent
information will be established based on agreements and the results made available to message
senders and recipients. Initially, information will be distributed on a case-by-case basis. In the
future we anticipate a registration authority.

2 REST or Representational State Transfer, proposed by Roy Fielding is technique used as part of some web services
APIs. See: http://en.wikipedia.org/wiki/Representational_State_Transfer. Services that adopt REST principles are
called RESTful.
3 SOAP may be considered for the future.

http://en.wikipedia.org/wiki/Representational_State_Transfer�

 Message Containers and API Framework
 Implementation DRAFT

Ref. : MPL-ACNS2-M
Date : Aug. 18, 2010
Version: 0.9a

 12

Each potential message recipient provides appropriate URI configuration information for
various messages that they receive using web-based delivery. Note that receivers must also
define the configuration information for email-delivery for use by senders who do not support
web-based delivery.

5.3 Transport Security

5.3.1 Encryption
To avoid monitoring traffic, all web service communications will be performed using

TLS 1.1 (informally, SSL) in accordance with RFC 4346.

5.3.2 Authentication
The message sender will authenticate the recipient through SSL certificates. Note that

the recipient must have a certificate with a chain of trust to a trusted certificate authority (CA).
The certificate must match the expected domain that is provided as part of the Designated Agent.

The message receiver must require a login with a secret password known only to the two
parties. The username and password will be handled using HTTP Basic Authentication, as per
RFC 2617. Sender must use the authentication credentials in the request header for every HTTP
request. This is necessary because mechanism is stateless and to avoid Error 401 (“Not
Authorized”) redirection.

5.4 Message Envelope
Message may be contained in a MessageEnvelope. If a MessageEnvelope is used, only

one XML Document may be included in the MessageEnvelope.
If a Signature Element is used, the signature element must contain the XMLDSIG

signature generated using the Messages element as the value and using parameters specified
above.

5.5 REST API
This section presents a RESTful API for ACNS. An understanding of RESTful interfaces

is assumed.

5.5.1 HTTP and XML
 REST APIs use HTTP POST, GET, PUT and DELETE as specified for each API.
HTTP communications in both directions should be conducted with the UTF-8 charset

and that the server only needs to support the identity encoding.
All XML exchanged shall be in well formed XML documents.

5.5.2 Status Codes and Error Responses
Status Codes are described in RFC 2616 and are common across all HTTP-based

interfaces. (http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html)

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html�

 Message Containers and API Framework
 Implementation DRAFT

Ref. : MPL-ACNS2-M
Date : Aug. 18, 2010
Version: 0.9a

 13

The following HTTP status codes are standard, and should be processed by web services
implementers. We do not anticipate other status codes. Behavior specific to notice sending is
included below.

• 200 OK. The message was received and is presumed to be processed. No further action
required.

• 400 Bad Request: The request was malformed. Specifically, the XML contained does not
correspond to a known ACNS or related element. Requests that are properly formed, but
cannot be processed for other reasons should result in a response error such as a
noticeAck element. An error message is returned.

• 401 Not Authorized: There was an authentication problem due to something wrong with
the basic authentication mechanism (e.g., bad or missing username/password).

• 403 Forbidden: System refuses to process a properly formed request. An error message
is returned. This occurs when the requestor sends a message that is not allowed; for
example, and administrative request from a non-administrator.

• 404 Not Found: An invalid URL or the resource was requested. The domain/path portion
of the URL was incorrect, or the REST portion of a URL did not correspond with a valid
request type. If the XML can still be processed, a 404 should not be returned.

• 500 Internal Server Error: server side failure.
• 503 Service Unavailable: Service overloaded. Try again later.

As applicable, the error status is returned in the header in accordance with HTTP
specification.

REST APIs may additionally return an error message in the body using the RequestError
element as defined below:

Element Attribute Definition Type
RequestError

ErrorNumber Number of the error xs:int
Description Text description of the error xs:string

5.5.3 REST Notes
The REST resource is a “notice.” All methods are in reference to a notice.
Note that the REST API might have been done quite differently had it been the first

implementation. However, to support backwards compatibility with existing ACNS delivery
based primarily on email, the XML still contains most of actionable information.

5.5.4 REST Endpoint (URL)
HTTP URLs are provided of the form

 Message Containers and API Framework
 Implementation DRAFT

Ref. : MPL-ACNS2-M
Date : Aug. 18, 2010
Version: 0.9a

 14

“https://”+ <recipient hierarchical part> + “/” + <method> [+ <parameters>]
• <recipient hierarchical part> is the recipient’s domain plus any path they choose

for requests.
• The <method> in the URI defines the method being invoked, the value for which is

the message name, as defined in the message definition section below.
• <parameters> is the any other portion of the URL

[BaseURL] refers to“https://”+ <recipient hierarchical part> + “/”

Different messages will use different parameters to be passed in along with the HTTP

request. Message specific API documents will outline the names and acceptable values for all
parameters to be used.

5.5.5 NoticeID
These APIs used the concept of noticeID to uniquely identify a notice. This takes the

form:
<noticeID> = <ID> + “:” + <email>
Where <ID> is the ID from the Case element and <email> is Email from the Complainant

element.
For example, 012345A:abuse@noticsender.com

5.5.6 ACNS REST Interfaces

5.5.6.1 Notice API
The Notice API is used to POST a new infringement notice.

Path:
 [BaseURL] + “Notice/” + <noticeID>

HTTP Method:

 POST - If new notice

 PUT - If the notice is being updated

Request Parameters:

<noticeID> is the identifier for the new notice

Request Body:

Body is well formed XML document with an acns:Infringement element.

 Message Containers and API Framework
 Implementation DRAFT

Ref. : MPL-ACNS2-M
Date : Aug. 18, 2010
Version: 0.9a

 15

Alternatively, the body may be well formed XML document with MessageEnvelope
element containing a single acns:Infringement element.

Response Body

Valid responses include
• No body, just a status code of 200

• NoticeAck

• NoticeAck in MessageEnvelope

• RequestError

5.5.6.2 NoticeStatusRequestID
The NoticeStatusRequestID API is used to request status on an existing notice.

Path:
 [BaseURL] + “NoticeStatusRequestID/” + <noticeID>

HTTP Method: POST

Request Parameters:

<noticeID> is the identifier for the notice whose status is requested.

Request Body:

Body is well formed XML document with an acns:StatusRequest element.

Alternatively, the body may be well formed XML document with MessageEnvelope
element containing a single acns:StatusRequest element.

Response Body

Valid responses include
• None (successful POST)

• NoticeStatus

• NoticeStatus in MessageEnvelope

• RequestError

5.5.6.3 NoticeStatusRequestTimeRange
The NoticeStatusRequestTimeRange API is used to request status on an existing notice.

Path:

 Message Containers and API Framework
 Implementation DRAFT

Ref. : MPL-ACNS2-M
Date : Aug. 18, 2010
Version: 0.9a

 16

 [BaseURL] + “NoticeStatusRequestTimeRange/” + <StartDateTime >+”/”+
<EndDateTime>

HTTP Method: POST

Request Parameters:

<StartDateTime> as available in the StartDateTime element of the
acns:StatusRequest element in xml datetime format

 <EndDateTime> as available in the EndDateTime element of the
acns:StatusRequest element in xml datetime format

Request Body:

Body is well formed XML document with an acns:StatusRequest element.

Alternatively, the body may be well formed XML document with MessageEnvelope
element containing a single acns:StatusRequest element.

Response Body

Valid responses include
• None (successful POST)

• NoticeStatus

• NoticeStatus in MessageEnvelope

• RequestError

5.5.6.4 NoticeStatusID
The NoticeStatusID API is sent as an asynchronous response to a

NoticeStatusRequestID message or it may be sent unsolicited.
Path:
 [BaseURL] + “NoticeStatusID/” + <noticeID>

HTTP Method: POST

Request Parameters:

<noticeID> is an identifier for the notice whose notice is being reported.

If this is a response to a NoticeStatusRequestID, then <noticeID> must match
the original request.

 Message Containers and API Framework
 Implementation DRAFT

Ref. : MPL-ACNS2-M
Date : Aug. 18, 2010
Version: 0.9a

 17

Request Body:

Body is well formed XML document with an acns:NoticeStatus element.

Alternatively, the body may be well formed XML document with MessageEnvelope
element containing a single acns:NoticeStatus element.

Response Body

Valid responses include
• None (successful POST)

• RequestError

5.5.6.5 NoticeStatusTimeRange
The NoticeStatusTimeRange API is sent as an asynchronous response to a

NoticeStatusRequestTimeRange message or it may be sent unsolicited.
Path:
 [BaseURL] + “NoticeStatusTimeRange/” + <StartDateTime >+”/”+
<EndDateTime>

HTTP Method: POST

Request Parameters:

<StartDateTime> start datetime of the time range in xml datetime format, and

 <EndDateTime> end datetime of the time range in xml datetime format

Request Body:

Body is well formed XML document with an acns:NoticeStatus element.

Alternatively, the body may be well formed XML document with MessageEnvelope
element containing a single acns:NoticeStatus element.

Response Body

Valid responses include
• None (successful POST)

• RequestError

 Message Containers and API Framework
 Implementation DRAFT

Ref. : MPL-ACNS2-M
Date : Aug. 18, 2010
Version: 0.9a

 18

6 LEGACY WEB SERVICES DELIVERY
This section describes a legacy interface for delivering ACNS messages using HTTP

POST in a non-RESTful way. This legacy API only supports the delivery of ACNS Notices and
is not available for any of the other ACNS messages (such as NoticeStatusRequest).

It is strongly recommended that implementers use the RESTful interface defined in
section 5 of this document as opposed to this legacy mechanism to deliver messages over HTTP.

6.1 API Style
The core requirement for a web services API is a secure, authenticated channel.

Encryption such as TLS 1.1 and authentication such as HTTP Basic Authentication are a
minimum expectation. Beyond that, any style of interface is acceptable.

6.2 Designated Agents
Not every ISP and other recipient will provide a web-based interface. Designated Agent

information will be established based on agreements and the results made available to message
senders and recipients. Initially, information will be distributed on a case-by-case basis. In the
future we anticipate a registration authority.

Each potential message recipient provides appropriate URI configuration information for
various messages that they receive using web-based delivery. Note that receivers must also
define the configuration information for email-delivery for use by senders who do not support
web-based delivery.

6.3 Transport Security

6.3.1 Encryption
To avoid monitoring traffic, all web service communications will be performed using

TLS 1.1 (informally, SSL) in accordance with RFC 4346.

6.3.2 Authentication
The message sender will authenticate the recipient through SSL certificates. Note that

the recipient must have a certificate with a chain of trust to a trusted certificate authority (CA).
The certificate must match the expected domain that is provided as part of the Designated Agent.

The message receiver must require a login with a secret password known only to the two
parties. The username and password will be handled using HTTP Basic Authentication, as per
RFC 2617. Sender must use the authentication credentials in the request header for every HTTP
request. This is necessary because mechanism is stateless and to avoid Error 401 (“Not
Authorized”) redirection.

 Message Containers and API Framework
 Implementation DRAFT

Ref. : MPL-ACNS2-M
Date : Aug. 18, 2010
Version: 0.9a

 19

6.4 Message Envelope
Message must be contained in a MessageEnvelope, and only one XML Document

may be included in the MessageEnvelope.
If a Signature Element is used, the signature element must contain the XMLDSIG

signature generated using the Messages element as the value and using parameters specified
above.

6.5 HTTP Post
Messages must be sent using HTTP POST with the following parameters:

Type POST
HTTP POST
parameters

id parameter containing <noticeID>
messagexml parameter is MessageEnvelope element with Type= Infringement and
Message element containing an ACNS Infringement element.

The following is a sample HTTP POST request and response. Placeholders (highlighted
in green italic) need to be replaced with actual values.

Note that all of the arguments sent using this method must be URL-encoded.

POST /enlighten/calais.asmx/Infringement HTTP/1.1
Host: copyrightcomplaints.isp.com
Content-Type: application/x-www-form-urlencoded
Content-Length: length
id=A1234567&MessageXML=%3C%3Fxml+version%3D%221.0%22+encoding%3D%22UTF-
8%22%3F%3E++%0D%0A%0D%0A%3CMessageEnvelope%3E%0D%0A%0D%0A++++%3CSignature%3E7
d6cd789c6d87c6d8c76d889d6cd9c7d9c7%3C%2FSignature%3E%0D%0A%0D%0A%3CMessages%3
E%0D%0A%0D%0A%0D%0A%3CMessage+Type%3D%22Notice%22%3E%0D%0A%0D%0A%3CInfringeme
nt++%3E%0D%0A000%0D%0A%3C%2FInfringemen
t%3E%0D%0A%0D%0A%0D%0A%3C%2FMessage%3E%0D%0A%3C%2FMessages%3E%0D%0A%3C%2FMess
ageEnvelope%3E%0D%0A%0D%0A%0D%0A%0D%0A%0D%0A+
HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length

	1 OVERVIEW
	1.1 Scope
	1.2 ACNS Transport Legacy
	1.3 References
	1.3.1 ACNS documents
	1.3.2 RFCs (Request for Comment)

	1.4 Document Conventions

	2 MESSAGING MODELS
	2.1 Legacy
	2.2 ACNS 2.0

	3 MESSAGE PACKAGING AND SIGNING
	3.1 Note on structure
	3.2 MessageEnvelope element
	3.3 Message Element
	3.4 Authentication
	3.4.1 Trust
	3.4.2 Signed XML

	4 EMAIL DELIVERY
	4.1 Processing Email Messages
	4.2 Designated Agents
	4.3 Subject
	4.4 Body
	4.4.1 ACNS Infringement Message (“Notice”) Body
	4.4.2 Other Message Body

	4.5 Message Responses
	4.6 Payload Encryption

	5 RESTFUL WEB SERVICES DELIVERY
	5.1 API Style
	5.2 Designated Agents
	5.3 Transport Security
	5.3.1 Encryption
	5.3.2 Authentication

	5.4 Message Envelope
	5.5 REST API
	5.5.1 HTTP and XML
	5.5.2 Status Codes and Error Responses
	5.5.3 REST Notes
	5.5.4 REST Endpoint (URL)
	5.5.5 NoticeID
	5.5.6 ACNS REST Interfaces
	5.5.6.1 Notice API
	5.5.6.2 NoticeStatusRequestID
	5.5.6.3 NoticeStatusRequestTimeRange
	5.5.6.4 NoticeStatusID
	5.5.6.5 NoticeStatusTimeRange

	6 LEGACY WEB SERVICES DELIVERY
	6.1 API Style
	6.2 Designated Agents
	6.3 Transport Security
	6.3.1 Encryption
	6.3.2 Authentication

	6.4 Message Envelope
	6.5 HTTP Post

